Considera-se que todas as partículas do sistema estão num único ponto do espaço, com a massa total do sistema.

O centro de massa de um corpo pode não estar no corpo.

Posição do centro de massa

A posição do centro de massa, \(\vec{r}_{CM}\), de um sistema de \(n\) partículas é dada pela expressão

$$\vec{r}_{CM}=\frac{{m}_{1}\;\vec{r}_{1}+{m}_{2}\;\vec{r}_{2}+...+{m}_{n}\;\vec{r}_{n}}{{m}_{1}+{m}_{2}+...+{m}_{n}}=\frac{1}{{m}_{total}}\sum^{n}_{i=1}{m}_{i} \; {\vec{r}}_{i}$$

em que:
\({m}_{1}\) - massa da partícula 1 (kg)
\(\vec{r}_{1}\) - posição da partícula 1 (m)
...

O cálculo pode ser realizado para cada um dos eixos, \(Ox\), \(Oy\) e \(Oz\), de forma independente:

$${x}_{CM}=\frac{{m}_{1}\;{x}_{1}+{m}_{2}\;{x}_{2}+...+{m}_{n}\;{x}_{n}}{{m}_{1}+{m}_{2}+...+{m}_{n}}=\frac{1}{{m}_{total}}\sum^{n}_{i=1}{m}_{i} \; {x}_{i}$$

$${y}_{CM}=\frac{{m}_{1}\;{y}_{1}+{m}_{2}\;{y}_{2}+...+{m}_{n}\;{y}_{n}}{{m}_{1}+{m}_{2}+...+{m}_{n}}=\frac{1}{{m}_{total}}\sum^{n}_{i=1}{m}_{i} \; {y}_{i}$$

$${x}_{CM}=\frac{{m}_{1}\;{z}_{1}+{m}_{2}\;{z}_{2}+...+{m}_{n}\;{z}_{n}}{{m}_{1}+{m}_{2}+...+{m}_{n}}=\frac{1}{{m}_{total}}\sum^{n}_{i=1}{m}_{i} \; {z}_{i}$$

Importância da posição do centro de massa

O Sistema Solar é um exemplo de um sistema bastante complexo, em que o centro de massa do sistema não é o centro do Sol (Figura 1). O movimento de todos os astros deste sistema faz com que o centro de massa do sistema esteja sempre a mudar.

 

Figura 1 - Centro de massa do Sistema Solar entre 1945 e 1995 [imagem: Teach Astronomy, adaptada].
Figura 1 - Centro de massa do Sistema Solar entre 1945 e 199 5[imagem: Teach Astronomy, adaptada].

 

A alteração da posição de uma estrela, por muito pequena que seja, causada pelos planetas a mover-se em seu redor, é um dos métodos usados para a descoberta de exoplanetas, quer através da análise da posição desse astro quer através da análise do seu espetro e deteção do efeito Doppler.

O centro de massa do sistema Terra-Lua também não se encontra no centro da Terra, embora esteja dentro da Terra. Ou seja, não é a Lua que se movimenta em torno da Terra, mas sim os dois astros, Terra e Lua, a movimentar-se em torno do centro de massa deste sistema (Figura 2). É este centro de massa que executa uma trajetória elíptica em torno do centro de massa do Sistema Solar.

 

Figura 2 - Centro de massa do sistema Terra-Lua.
Figura 2 - Centro de massa do sistema Terra-Lua.

 

Determinação experimental do centro de massa

A determinação do centro de massa de um corpo pode ser efetuada de forma experimental. É normal existir nas escola um conjunto para esta determinação, para corpos simples, planos.

Velocidade do centro de massa

$$\vec{v}_{CM}=\frac{d \; \vec{r}_{CM}}{dt}=\frac{1}{{m}_{total}}\sum^{n}_{i=1}{m}_{i} \; {\vec{v}}_{i}$$

em que:
\(\vec{r}_{CM}\) - posição do centro de massa do sistema (m)
\({m}_{i}\) - massa da partícula i (kg)
\(\vec{v}_{1}\) - velocidade da partícula i (m s-1)
...

Aceleração do centro de massa

$$\vec{a}_{CM}=\frac{d \; \vec{v}_{CM}}{dt}=\frac{1}{{m}_{total}}\sum^{n}_{i=1}{m}_{i} \; {\vec{a}}_{i}$$

em que:
\(\vec{v}_{CM}\) - velocidade do centro de massa do sistema (m s-1)
\({m}_{i}\) - massa da partícula i (kg)
\(\vec{a}_{1}\) - aceleração da partícula i (m s-2)
...