

Fatores que afetam a solubilidade

Para além da temperatura, que afetam os equilíbrio de forma já estudada, a solubilidade pode ser alterada pela variação da concentração:

Todas as alterações podem ser previstas de acordo com o Princípio de Le Châtelier.

[Reações laterais: podem ocorrer reações laterais que envolvem os iões do sal (consumindo-os), aumentando desta forma a solubilidade do sal.]

Fatores que afetam a solubilidade

Ião comum

A presença, na solução, de um **ião comum ao sal** diminui a solubilidade desse sal.

Exemplo:

$$PbI_2(s) \rightleftharpoons Pb^{2+}(aq) + 2 I^-(aq)$$

Adicionando a este equilíbrio uma outra solução contendo o ião I⁻ (ou Pb²⁺)...

 \parallel

O equilíbrio reage no sentido de diminuir a concentração de I⁻ (ou Pb²⁺) (sentido inverso)

 \parallel

Diminuição da solubilidade de PbI₂

Princípio de Le Châtelier

Adição de ácidos

A adição de um ácido pode provocar o consumo de um dos iões presentes na solução, aumentando a solubilidade do sal.

Exemplo:

$$CaCO_3$$
 (s) $\rightleftharpoons Ca^{2+}$ (aq) $+ CO_3^{2-}$ (aq)

Adicionando a este equilíbrio uma solução ácida contendo o ião H+...

$$CO_3^{2-}$$
 (aq) + 2 H⁺ (aq) \rightarrow CO₂ (g) + H₂O (l)

Apenas acontece se o anião do sal for base conjugada de um ácido fraco!

...reduzindo a concentração de iões $\mathrm{CO_3}^2$ no primeiro equilíbrio

J

O equilíbrio reage no sentido de aumentar a concentração de CO₃²⁻ (sentido direto)

 \Downarrow

Aumento da solubilidade de CaCO₃

Fatores que afetam a solubilidade

Princípio de Le Châtelier

Formação de iões complexos

A formação de iões complexos que sejam solúveis aumenta a solubilidade do sal.

Exemplo:

$$AgCl(s) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq)$$

Adicionando NH₃ a este equilíbrio...

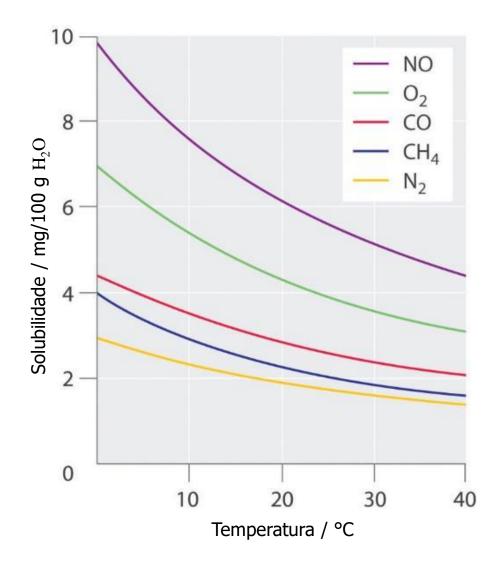
 $\downarrow Ag^+ (aq) + 2 NH_3 (aq) \rightleftharpoons [Ag(NH_3)_2]^+ (aq)$

Formação de um ião complexo.

...reduzindo a concentração de iões Ag+ no primeiro equilíbrio

 \Downarrow

O equilíbrio reage no sentido de aumentar a concentração de Ag+ (sentido direto)

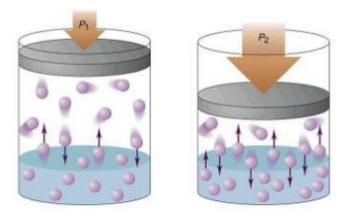

Aumento da solubilidade de AgCl

Solubilidade de solutos gasosos

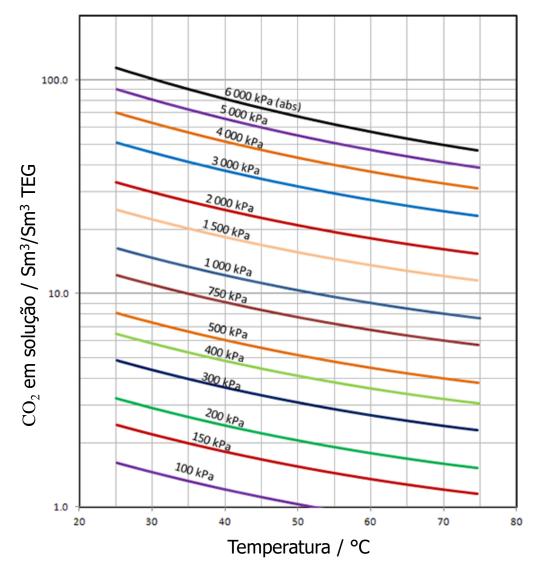
Fatores que afetam a solubilidade

Temperatura

O aumento da temperatura da solução provoca uma diminuição do valor da solubilidade, havendo, por isso, escape do gás à medida que a solução aquece.


[Imagem: 2012books.lardbucket.org, adaptada]

Solubilidade de solutos gasosos


Fatores que afetam a solubilidade

Pressão

O **aumento da pressão** tem como consequência um **aumento da solubilidade**.

É assim que se introduz gás (CO₂) nas bebidas gaseificadas!

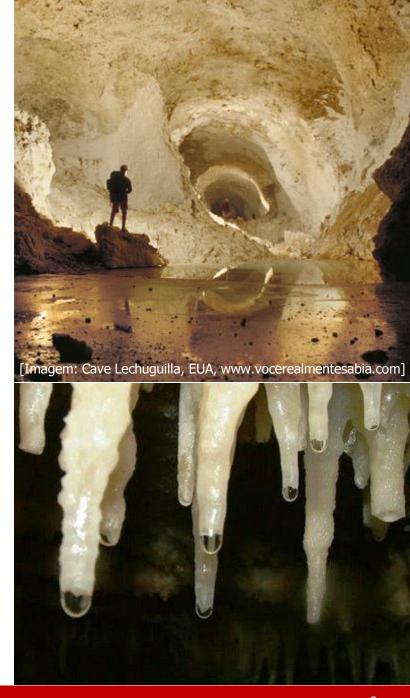
[Imagem: www.jmcampbell.com, adaptada]

Formação de grutas, estalactites e estalagmites

Estes fenómenos acontecem em zonas de **rochas calcárias**, constituídas por **muito** CaCO₃, podendo ocorrer o seguinte equilíbrio:

$$CaCO_3(s) + H_2O(1) + CO_2(g) \rightleftharpoons Ca^{+2}(aq) + 2 HCO_3^{-1}(aq)$$

Grutas


Em profundidade, a solubilidade do CO₂ aumenta, deslocando o equilíbrio no sentido direto, provocando a dissolução do carbonato de cálcio.

Há o aparecimento de grutas!

Estalactites e estalagmites

Com a infiltração de água nas grutas, há aparecimento de Ca^{+2} e de HCO_3^- , resultantes de dissolução das rochas calcárias. Devido à evaporação de água, e à baixa pressão de CO_2 , o equilíbrio é deslocado no sentido inverso.

Há aparecimento de precipitado: estalactites e estalagmites.

Bibliografia

- C. C. Silva, C. Cunha, M. Vieira, "Eu e a Química 11", Porto Editora, Porto, 2016.
- D. Reger, S. Goode, E. Mercer, "Química: Princípios e Aplicações", 2ª edição, Fundação Calouste Gulbenkian, Lisboa, 2010.
 J. Paiva, A. J. Ferreira, M. G. Matos, C. Morais, C. Fiolhais, "Novo 11Q", Texto Editores, Lisboa, 2016.
- M. C. Dantas, M. D. Ramalho, "Novo Jogo de Partículas 11º ano", Texto Editores, Lisboa, 2016.